High Temperature Heat Pumps

A green perspective for process steam production in paper industries

Mark Reissig, Jochen Schäfer, Alexander Hoeren

Accelerating the industrial decarbonisation with the REPowerEU
Bruxelles, 01.02.2023
Siemens Energy heat pumps for process steam supply in fiber industries – example and key learnings

Example

```
Feedwater / Condensate → Heat Pump → Process Steam to Steam System / Paper Machine → Steam Compressor → Waste Heat e.g. Process Water
```

BACKGROUND

- High temperature heat pump utilizes waste heat from hood exhausts to produce saturated steam from feedwater
- Low pressure saturated steam is fed to steam compressor (multi-stage intercooled)
- Final adjustment of steam parameters by attemperation

Key learnings

Integration in new paper mills leads to better economics
- Higher efficiency of heat integration
- HP+SC space requirement not to be neglected

Hood exhaust attractive heat source in paper mill. Condensation of water leads to:
- Large heat source → “low” spec. CAPEX
- Rather “high” temperature → “high” COP
- Plume reduction
- Water reuse
Siemens Energy heat pumps open-up green perspectives for process steam supply in fiber industries

Siemens Energy heat pumps w/ or w/o steam compressor …

… serving the needs of our customers

Heat supply

~12 – 70 MW$_{th}$ per unit

Temperatures

up to 150°C directly from heat pump

Environment friendly work medium

low GWP1 and ODP2

Various drive concepts

Electrical or mechanical

Combination with steam compression

-> higher temperatures and pressures > 3.7 bara (process steam production up to 55 bara, 270°C)

Scope of supply

Component up to turnkey supply

1 GWP = Global Warming Potential

2 ODP = Ozone Depletion Potential
Siemens Energy heat pumps
Application Cases | Pulp and Paper

HEAT PUMP FOR STREAM PRODUCTION FOR DRYING PROCESS– UTILIZATION OF WASTE HEAT

Steam from Waste Heat

BENEFITS

- Heat recovery increases overall energy efficiency of paper machine
- Lower production cost due to recovered heat
- Production of steam is highly flexible, produced steam can be utilized throughout the whole steam system

Example: Waste Heat @ 45 °C → 35 °C

MAIN LEVERS ON COP

- Required steam pressure: the higher the steam pressure the lower the COP → Every 0.5 bara counts
- A higher temperature spread between the source and sink leads to a lower COP
Siemens Energy heat pumps
Major SE core components – 16 MW_{th} example

CONDENSER + SUBCOOLER

EVaporator

SIEMENS MOTOR
4,16 KV, 3,5 MW, 1500 RPM

FOOTPRINT – 16MW_{th}
15m x 10,5m x 6 m
(length x width x draft)

SIEMENS ENERGY SINGLE SHAFT CENTRIFUGAL VERTICALLY SPLIT RADIAL COMPRESSOR (3 IMPELLERS)

Gear Type Compressor as Steam Compressor
Contact

Mark Reissig
Principal Expert Energy System Design & Concepts
Siemens Energy – Industrial Heat Pump Solution

+49 174 1520508
mark.reissig@siemens-energy.com

Disclaimer

The information and opinions contained in this document are provided as at the date of this presentation and are subject to change without notice. They do not purport to contain all information that may be required to evaluate Siemens or Siemens Energy and have not been verified independently. Historical financial or operative information contained in this document has been taken or derived from Siemens’ financial statements, accounting records or management reporting. The combined financial statements for Siemens Energy are currently being prepared. These may deviate substantially from the information included in this document. The information in this document is of a preliminary and abbreviated nature and may be subject to updating, revision and amendment, and such information may change materially. In addition, the historical financial and operative information included in this document does not necessarily fully reflect changes that will occur when Siemens Energy operates as a separate group of companies.

Accordingly, such information is not necessarily indicative for the future consolidated results of operations, financial position or cash flows of the prospective Siemens Energy business on a stand-alone basis.

This document includes – in the applicable financial reporting framework not clearly defined – supplemental financial measures that are or may be alternative performance measures (non-GAAP-measures). These supplemental financial measures should not be viewed in isolation or as alternatives to measures of Siemens’ or Siemens Energy’s net assets and financial positions or results of operations as presented in accordance with the applicable financial reporting framework in its consolidated financial statements and combined financial statements, respectively. Other companies that report or describe similarly titled alternative performance measures may calculate them differently. Due to rounding, numbers presented throughout this and other documents may not add up precisely to the totals provided and percentages may not precisely reflect the absolute figures.

This document contains forecasts, statistics, data and other information relating to markets, market sizes, market shares, market positions and other industry data on Siemens’ or Siemens Energy’s business and markets (together the “market data”) provided by third party sources as interpreted by us. This market data is, in part, derived from published research and additional market studies prepared primarily as a research tool and reflects estimates of market conditions based on research methodologies including primary research, secondary sources and econometric modelling, which may not be representative.