

Introduction of Speakers

Harald Dany
Business Development Manager
Atlas Copco Gas and Process, Cologne
harald.dany@atlascopco.com

Thank you EHPA for the kind invitation to speak here!

This is the Atlas Copco Group

Customers in more than **180** countries

43 000 employees in 70 countries

Established in **1873** Stockholm, Sweden

Turnover of 111 BSEK/ 11 BEUR

A decentralized Group

BOARD OF DIRECTORS

PRESIDENT AND CEO

GROUP MANAGEMENT

COMPRESSOR TECHNIQUE

- Compressor Technique Service
- Industrial Air
- Oil-free Air
- Professional Air
- Gas and Process
- Medical Gas Solutions
- Airtec

VACUUM TECHNIQUE

- Vacuum Technique Service
- Semiconductor Service
- Semiconductor
- Semiconductor Chamber Solutions
- Scientific Vacuum
- Industrial Vacuum

INDUSTRIAL TECHNIQUE

- Industrial Technique Service
- MVI Tools and Assembly Systems
- General Industry Tools and Assembly Systems
- Chicago Pneumatic Tools
- Industrial Assembly Solutions
- Machine Vision Solutions

POWER TECHNIQUE

- Power Technique Service
- Specialty Rental
- Portable Air
- Power and Flow

Atlas Copco Energas – An overview

(incl. solutions for power plants)

energy recovery

Product overview

Туре	Technology	No. of stages	Max. power kW	Max. pressure bar a	Types of gases
Compressors	Integrally-geared for process gas	1-8	37 000	205	All
	Non-geared for air	1-3	37 000	7	Air
	Non-geared for polyolefins	1	6 000	40	PE / PP
	Oil-free gas screw	1-3	1 100	30	(Bio)-methane, NG, BOG, CO2, mixed refrigerant
	Oil-injected gas screw	1	250	16	(Bio)-methane, NG, BOG, CO2, mixed refrigerant
Expanders	Geared	1 – 4	23 000	250	All
	Non-geared	1-4	23 000	200	All
	Oil-free gas screw	1-3	500	25	Natural Gas (pipe-line)
Compander	Geared	1-8	37 000	205	All

Steam Generation

Case Overview

- Upgrade of the steam production in a German Paper Mill
- The plant has already a shortage of steam for the actual paper production
- Future Increase of Cardboard production requires additional steam
- Turn Key Supply of a Heat Pump System
- Heat Pumps System for Base Load Steam Demand
 - Approx. 42 t/h Steam
 - 5 bar
 - 175 °C
 - Total COP =2,3
 - 11 MW heat recovery from Drying Hood

Case: Base Load Heat Pumps Steam Generator for a German Paper Mill

Heat Pump Products

Sample References

Heat Pump, 40MW_{thermal}

Steam Compressor, Product Steam 12 bara @ 275°C

Heat Pumps Steam Generator for German Paper Mill

COP of Steam Generating Heat Pump

Closed Loop Butane Heat Pump COP= 3,6

Steam compressor used to increase pressure and temperature of the steam

What if 150°C is sufficient?

=> Higher efficiency if you go to lower Temperature

Large scale engineered Heat Pumps Steam Generator Systems

Avarage CAPEX per MW_{thermal} of a Engineered Heat Pump System

Relative Cost of Engineered Heat Pump System

Case: Base Load Heat Pumps Steam Generator for a German Paper Mill

OPEX, CAPEX & TCO comparison – Base Load Steam Production

		Gas Fired	Electric	Heat Pump	
		Boiler	Boiler	Steam Generator	
Steam Demand		175 °C @ 5 bar abs; ~42 t/h			
Required Heat	kW	25.000			
Efficiency	%	96,00	99,00	230,00	
Primary Energy Demand*3	kWh	26.042	25.253	10.870	
Yearly Primary Energy Consumption	MWh	216.719	210.152	90.457	
Total price per kWh	EUR/kWh	0,07	0,22	0,23	
Price per kWh	EUR/kWh	0,04	0,13	0,15	
Tax and Duties*1	EUR/kWh	0,01	0,04	0,04	
Grid usage fee	EUR/kWh	0,01	0,05	0,04	
Carbon tax	EUR/kWh	0,01			
Energy Cost yearly	TEUR	15.170	46.233	20.805	
CO2 Emission *2	tons/year	43.517	*4	*4	
OPEX - 10 years	TEUR	151.703	462.333	208.050	
CAPEX (approx.)	TEUR	1.300	1.500	24.000	
TCO - 10 years	MEUR	153.003	463.833	232.050	

^{*1} Excluding VAT and other recoverable taxes and levies; *2 200,8 g CO₂/ kWh; *3 95% utilization assumed; *4 100% renewable energy assumed

Case: Base Load Heat Pumps Steam Generator for a German Paper Mill

TCO – Total Cost of Ownership for 10 years

Summary

- Heat Pumps Systems are the most efficient solution for CO2 neutral base load steam generation in Paper Mills
- Significant Reduction of CO2 Emmisions
- TCO compare to electric boilers, the high CAPEX is off set by the high OPEX
- TCO compared to fossile fuel steam generation systems the Electric Energy Cost is the dominating factor
- Electric Energy Price Development
 - Decoupling of the price from Fossile Fuel Price
 - High Electric Energy cost can be offset by CCfD's (Carbon Contract for Differences)
 - With the increase of Renewables Energy Production the Electric Energy price is expected to fall

Atlas Copco

