Added value of storage in distribution systems

Johan Van Bael, VITO/EnergyVille
Digitalisation in the heating and cooling industry: combining policy and project perspectives
EHPA, 9th of March 2021
09.03.21
EnergyVille/VITO

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 646426
About STORY

Table of contents

• General project information
• Objectives
• Project demonstrations
• Method for energy content determination of water storage tanks
General project information

• 18 institutions from 8 countries
• Coordinator: VTT
• Technical coordinator: Th!nk E
• Horizon 2020 (LCE-08-2014)
• Start: May 1st, 2015 (Duration: 66 months)
• Budget: 15.8 million Euro
Project partners
Objectives

Show the added value of storage in the distribution grid

• To demonstrate and evaluate innovative approaches for energy storage systems
• To find solutions, which are affordable, secure and ensure an increased percentage of self-supply of electricity
• To accelerate innovation and business models for deployment of storage at local level.
Project demonstrations

1. Demonstration in residential building (Oud-Heverlee, Belgium)

- Technologies (new or existing)
 - PV, PV-Thermal, vacuum collectors
 - Natural gas, oil, heat pumps
 - 2 electric vehicles
 - Load shifting

- Storage type (new)
 - Batteries
 - Small and large scale thermal water storage (low and high temperature)
 - Fuel cells
 - ICT at building level (interoperability)

Site contains 7 new and old buildings at the end of the electricity line
Project demonstrations

1. Demonstration in residential building (Oud-Heverlee, Belgium)

- Building 1
 - $U < 0.1 \text{ W/m}^2\text{K}$
 - LED
 - Smart 2-zone ventilation: continuous measuring of CO_2, T and humidity
 - Smart household appliances
 - KNX home control
 - BTES + heat pump
 - Electric vehicle
 - PV-Thermal and vacuum collectors
 - Hot water tanks / cooling basins
 - 2 batteries
Project demonstrations

2. Demonstrating the roll out of a neighbourhood (Oud-Heverlee, Belgium)

- Buildings from demo 1 are connected, combined with another 7 buildings -> microgrid
- ICT will integrate operation of thermal storages, heat pumps, fuel cell, PV and batteries and optimize it at the neighborhood scale
- Neighborhood battery

Additional 7 buildings compose last part of the line with its specific challenges
3. Demonstration of storage in factory (Navarra, Spain)

- **Existing situation**
 - Facility produces professional fridge rooms and requires high power peak values (280 kW)
 - Installed 113 kWp PV does not deliver expected cost savings

- **Objectives and technologies**
 - 50 kW, 200 kWh Li-Ion battery will be added to improve the business case
 - Reduction of peak power
 - Demand side management

Site is located in an industrial zone in Navarra.
Project demonstrations

4. Demonstration of storage in residential district (Lecale, Northern Ireland)

- **Existing situation**
 - 250 kW of PV installed
 - 2 x 2,5 MW onshore wind turbines
 - 500 kW anaerobic digestion unit
 - 1.2 MW tidal energy test

- **Objectives and technologies**
 - Extension with a large scale, medium voltage 250 kW and 2 MWh Compressed Air Energy Storage (CAES)
 - To increase security of supply

Site is under development to become a complete self-sufficient, greener, cheaper energy grid for the 300 residential buildings
Project demonstrations

5. Flexibility and robustness of large scale storage unit (Germany/Slovenia)

- Objectives and technologies
 - Flexible design of medium voltage battery: 800 kW, 660 kWh
- Location: Suha, Slovenia
 - 210 kW of PV already installed
 - Low Voltage (LV) network supplied by 400 kVA transformer
- Objectives
 - Demonstration of flexibility and robustness of the battery

A village, where the battery will be installed at the Low Voltage (LV) substation
6. Roll out of private multi-energy grid in industrial area (Olen, Belgium)

Site is located around a large joinery, which has a large amount of wood waste

- **Existing situation**
 - Old wood-fired boiler

- **Objectives and technologies**
 - New highly-efficient wood-fired boiler
 - Organic Rankine Cycle (ORC)
 - Large scale thermal energy storage (low and high temperature)
 - Multi-temperature district heating
 - To increase efficiency of ORC
 - To reduce power peaks
 - To increase self-sufficiency
Project demonstrations

6. Roll out of private multi-energy grid in industrial area (Olen, Belgium)
Project demonstrations

http://horizon2020-story.eu/
Description of technology: energy content of water tanks
Energy content of water storage tanks

Why needed?

- A lot of water storage tanks are equipped with only one temperature sensor
 - Electric hot water heaters
 - Tanks for solar collectors
 - Etc.
- Advantage:
 - Only one temperature sensor is needed
 - Works well for the application
 - Start full loading of the electric hot water heater if temperature is below certain value
 - Stop loading via solar collector if temperature is above certain level
- Disadvantage
 - No detailed information about the energy content of the tank, only information at one certain point
 - Difficult to be used for smart control
Energy content of water storage tanks

Why needed?

• Some applications use a lot of sensors
 – Large-scale water storage tanks for CHP in greenhouses
 – Etc.

• Advantage:
 – Multiple sensors give detailed overview of the temperature of each of the layers in the tank
 – Could be used for smart control

• Disadvantage
 – Higher investment cost for monitoring equipment
 – Higher cost for maintenance (multiple sensors)
Energy content of water storage tanks

VITO solution

• Combination of a limited number of sensors and a model of the tank
Energy content of water storage tanks

VITO solution - procedure

- Starting with detailed testing of the storage tank
- Including flow meters and temperature sensors

![Diagram showing the process of testing and monitoring water storage tanks with flow meters and temperature sensors.](Diagram)
Energy content of water storage tanks

VITO solution - procedure

- Reducing number of sensors (no flow meters, only temperature sensors)
- Optimal location of sensor
Energy content of water storage tanks

VITO solution

- Cloud application (API – Application Programming Interface)
Energy content of water storage tanks

VITO solution

- Tested solution (Story-demonstration project in Oud-Heverlee)
Energy content of water storage tanks

VITO solution

- Used in our VITO-Building Energy Management System
Energy content of water storage tanks

VITO solution

- Implemented in our STORM district heating network controller
Energy content of water storage tanks

Contact

EnergyVille/VITO
Johan Van Bael
Activity Leader Optimisation Thermal Energy Systems
johan.vanbael@vito.be

EnergyVille/VITO
Erik De Schutter
Business Development Manager
erik.deschutter@vito.be
THANK YOU!