IDEAS FROM EUROPE

Linda van Duivenbode
Lead Energy

18.11.2021 | 14:00 - 16:15 CET

Matchmaking Heat Pumps and Stakeholders no.2: Research, Innovation and Projects
Online Matchmaking Event
European funding programmes - Overview

Pilar 1
Excellent Science:
- ERC
- MSCA
- Infra

Pilar 2
Global Challenges and European Industrial Competitiveness

Pilar 3
European Innovation Council
- European innovation ecosystems
- European Institute of Innovation and Technology

Horizon Europe

© smartspend.eu project
European funding programmes 2

EU funding instrument for the environment and climate action (and 2021-2027 also transition to clean energy)

Bridging the gap between development of new knowledge (Horizon Europe) and implementation (large-scale deployment finance).

Budget € 5.4 billion

Digital Europe (DIGITAL)

Accelerate the recovery and drive the digital transformation of Europe. Fill the gap between the research of digital technologies and their deployment, and to bring the results of research to the market – for the benefit of Europe’s citizens and businesses – in particular SMEs.

Budget € 7.6 billion

CEF supports the development of high performing, sustainable and efficiently interconnected trans-European networks in the fields of transport, energy and digital services. CEF investments fill the missing links in Europe's energy, transport and digital backbone.

Budget: €5.84 billion (Energy)
European funding programmes 3

The **Innovation Fund** focuses on:

- Innovative low-carbon technologies and processes in energy-intensive industries, including products substituting carbon intensive ones
- Carbon capture and utilisation (CCU)
- Construction and operation of carbon capture and storage (CCS)
- Innovative renewable energy generation
- Energy storage

Eureka Eurostars

Largest international funding programme for SMEs wishing to collaborate on R&D projects that create innovative products, processes or services for commercialisation. Your consortium must spotlight an innovative SME as the main project participant.
European funding programmes 4

For innovators, start-ups and scale-ups

Research and Innovation, Education, Capital, Coaching, Entrepreneurship
Information sources

- EU Funding & Tender opportunities portal
- Access to finance portal
- H2020 project SmartSpend
- Enterprise Europe Network
- European Investment Bank InnovFin Advisory
- European Business Angel Network (EBAN)
- Whitehelm Capital Smart City Investment Fund (SCIF)
Horizon calls – how does it work

HORIZON-CL5-2022-D3-01-10: Interoperable solutions for flexibility services using distributed energy storage

- **Cluster 5: Climate, Energy & Mobility (WP8)**
- **Work programme year**
- **Type of action:** IA
- **Budget (EUR million):** 7
- **Expected EU contribution/project (EUR million):** 2-3
- **Opening:** 14 October 2021
- **Closing:** 26 April 2022 17:00 Brussels time
- **Single Stage**
- **TRL 5-7 at end of project**

Topic description:
Expected outcome: description of the concrete results the project is expected to deliver (during the project lifespan) and the outcome (medium-term effect of the project results)

Scope: what activities should be included in the project

NEW
Destination description (policy context and targets: Key Strategic Objectives / KSO)
Expected impacts: credible pathways towards scientific, societal and economic impact of the project (longer-term)
From H2020 to Horizon Europe

Scientific Impact
1. EU world-class excellence in science
2. Emergence of new technologies or fields of science in the EU
3. Better transnational and cross-sector coordination of R&I efforts
4. Better contribution of R&I to tackle societal challenges
5. EU steering the international agenda to tackle global SCs
6. Better societal acceptance of science and innovative solutions
7. Diffusion of innovation generating jobs, growth and investments
8. Strengthened competitive position of European industry
9. Better innovation capabilities of EU firms

Societal Impact
1. Creating high-quality new knowledge
2. Strengthening human capital in R&I
3. Fostering diffusion of knowledge and Open Science
4. Addressing EU policy priorities through R&I
5. Delivering benefits & impact via R&I missions
6. Strengthening the uptake of innovation in society

Economic Impact
1. Leveraging investments in R&I
8. Creating more and better jobs
9. Generating innovation-based growth
<table>
<thead>
<tr>
<th>Toward scientific impact</th>
<th>Short-term</th>
<th>Medium-term</th>
<th>Longer-term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating high-quality new knowledge</td>
<td>Publications – Number of FP peer reviewed scientific publications</td>
<td>Citations – Field-Weighted Citation Index of FP peer reviewed publications</td>
<td>World-class science – Number and share of peer reviewed publications that are core contribution to scientific fields</td>
</tr>
<tr>
<td>Strengthening human capital in R&I</td>
<td>Skills – Number of researchers having benefitted from upskilling activities in FP projects</td>
<td>Careers – Number and share of upskilled FP researchers with more influence in their R&I field</td>
<td>Working conditions – Number and share of upskilled FP researchers with improved working conditions</td>
</tr>
<tr>
<td>Fostering diffusion of knowledge and Open Science</td>
<td>Shared knowledge – Share of FP research outputs (open data / publication / software etc) shared through open knowledge infrastructures</td>
<td>Knowledge diffusion – Share of open access FP research outputs actively used / cited</td>
<td>New collaborations – Share of FP beneficiaries having developed new transdisciplinary / trans-sectoral collaborations with users of their open FP R&I outputs</td>
</tr>
</tbody>
</table>
Societal impact indicators

<table>
<thead>
<tr>
<th>Toward societal impact</th>
<th>Short-term</th>
<th>Medium-term</th>
<th>Longer-term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addressing EU policy priorities through R&I</td>
<td>Outputs – Number and share of outputs aimed at addressing specific EU policy priorities</td>
<td>Solutions – Number and share of innovations and scientific results addressing specific EU policy priorities</td>
<td>Benefits – Aggregated estimated effects from use of FP funded results, on tackling specific EU policy priorities, including contribution to the policy and law-making cycle</td>
</tr>
<tr>
<td>Delivering benefits and impact through R&I missions</td>
<td>R&I mission outputs – Outputs in specific R&I missions</td>
<td>R&I mission results – Results in specific R&I missions</td>
<td>R&I mission targets met – Targets achieved in specific R&I missions</td>
</tr>
<tr>
<td>Strengthening the uptake of innovation in society</td>
<td>Co-creation – Number and share of FP projects where EU citizens and end-users contribute to the co-creation of R&I content</td>
<td>Engagement – Number and share of FP beneficiary entities with citizen and end-users engagement mechanisms after FP project</td>
<td>Societal R&I uptake – Uptake and outreach of FP co-created scientific results and innovative solutions</td>
</tr>
</tbody>
</table>
Economic impact indicators

<table>
<thead>
<tr>
<th>Toward economic impact</th>
<th>Short-term</th>
<th>Medium-term</th>
<th>Longer-term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating innovation-based growth</td>
<td>Innovative outputs – Number of innovative products, processes or methods from FP (by type of innovation) & Intellectual Property Rights applications</td>
<td>Innovations – Number of innovations from FP projects (by type of innovation) including from awarded IPRs</td>
<td>Economic growth – Creation, growth & market shares of companies having developed FP innovations</td>
</tr>
<tr>
<td>Creating more and better jobs</td>
<td>Supported employment – Number of FTE jobs created, and jobs maintained in beneficiary entities for the FP project (by type of job)</td>
<td>Sustained employment – Increase of FTE jobs in beneficiary entities following FP project (by type of job)</td>
<td>Total employment – Number of direct and indirect jobs created or maintained due to diffusion of FP results (by type of job)</td>
</tr>
<tr>
<td>Leveraging investments in R&I</td>
<td>Co-investment – Amount of public & private investment mobilised with the initial FP investment</td>
<td>Scaling up – Amount of public & private investment mobilised to exploit or scale up FP results</td>
<td>Contribution to ‘3% target’ – EU progress towards 3% GDP target due to FP</td>
</tr>
</tbody>
</table>
Canvas part 1

<table>
<thead>
<tr>
<th>SPECIFIC NEEDS</th>
<th>EXPECTED RESULTS</th>
<th>D & E & C MEASURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are the specific needs that triggered this project?</td>
<td>What do you expect to generate by the end of the project?</td>
<td>What dissemination, exploitation and communication measures will you apply to the results?</td>
</tr>
</tbody>
</table>
| Example 1 Most airports use process flow-oriented models based on static mathematical values limiting the optimal management of passenger flow and hampering the accurate use of the available resources to the actual demand of passengers. | Example 1 Successful large-scale demonstrator: Trial with 3 airports of an advanced forecasting system for proactive airport passenger flow management. | Example 1
Exploitation: Patenting the algorithmic model. |
| Algorithmic model: Novel algorithmic model for proactive airport passenger flow management. | | Dissemination towards the scientific community and airports: Scientific publication with the results of the large-scale demonstration. |
| Example 2 Electronic components need to get smaller and lighter to match the expectations of the end-users. At the same time there is a problem of sourcing of raw materials that has an environmental impact. | Example 2 Publication of a scientific discovery on transparent electronics. | Communication towards citizens: An event in a shopping mall to show how the outcomes of the action are relevant to our everyday lives. |
| New product: More sustainable electronic circuits. | | Example 2
Exploitation of the new product: Patenting the new product; Licencing to major electronic companies. |
| Three PhD students trained. | | Dissemination towards the scientific community and industry: Participating at conferences; Developing a platform of material compositions for industry; Participation at EC project portfolios to disseminate the results as part of a group and maximise the visibility vis-à-vis companies. |
Target Groups

Who will use or further up-take the results of the project? Who will benefit from the results of the project?

Example 1
- **9 European airports:** Schiphol, Brussels airport, etc.
- **The European Union aviation safety agency.**
- **Air passengers (indirect).**

Example 2
- **End-users:** consumers of electronic devices.
- **Major electronic companies:** Samsung, Apple, etc.
- **Scientific community** (field of transparent electronics).

Outcomes

What change do you expect to see after successful dissemination and exploitation of project results to the target group(s)?

Example 1
- **Up-take by airports:** 9 European airports adopt the advanced forecasting system demonstrated during the project.

Example 2
- **High use of the scientific discovery published** (measured with the relative rate of citation index of project publications).

A **major electronic company** (Samsung or Apple) exploits/uses the new product in their manufacturing.

Impacts

What are the expected wider scientific, economic and societal effects of the project contributing to the expected impacts outlined in the respective destination in the work programme?

Example 1
- **Scientific:** New breakthrough scientific discovery on passenger forecast modelling.
- **Economic:** Increased airport efficiency
 - Size: 15% increase of maximum passenger capacity in European airports, leading to a 28% reduction in infrastructure expansion costs.

Example 2
- **Scientific:** New breakthrough scientific discovery on transparent electronics.
- **Economic/Technological:** A new market for touch enabled electronic devices.
- **Societal:** Lower climate impact of electronics manufacturing (including through material sourcing and waste management).
Further information / assistance

linda.van.duivenbode@ideasfrom.eu
Linkedin https://www.linkedin.com/in/lindavanduivenbode/